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Abstract: The connectivity of wireless network is critical for effective and efficient 
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increasing node density, there is a transition phase of connectivity when a network starts 
transforming from partition to connected state. In this paper, we study the upper- and lower-
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1 Introduction 

In a wireless network, the connectivity in multi-hop way is 
often affected by node density, transmission range, residual 
energy and node mobility. A partitioned wireless ad hoc 
network can turn into a connected network when some of 
the above factors change. The number of nodes being 
deployed in a designated area can influence the network 
connectivity greatly. Understanding the transition phase of 
the network between partition and connectivity can help 

network management, planning, maintenance and performance 
monitoring. The importance of the connectivity issue has 
drawn great attention recently to obtain fundamental 
properties of the problem in many application domains. For 
example, the minimum number of average neighbours for 
network connectivity in static topology (Xue and Kumar, 
2004); the last connection time and the first partition time 
with regard to node failure models in wireless networks 
(Xing and Wang, 2008); the impact of interference on the 
connectivity (Dousse et al., 2005); the relationship between 

power saving on sensor networks and maintaining 
connectivity (Dousse et al., 2004; Kong and Yeh, 2007).  
In these works, the percolation theory has been used leading 
to results of critical densities defined based on statistical 
concept of giant component (Kesten, 1982). 

Viewing the need of parsimonious use of networking 
devices in some applications, for example, a large area with 
scarce available resources like in some surveillance 
scenarios, an understanding of the transition phase becomes 
extremely important. The transition phase can be defined by 
the lower and the upper bounds of the critical density 
following the growth of number of nodes. In the early 
related works, the problem has been simplified for 
uniformed networks which are not sufficient for some 
heterogeneous and multi-hop wireless network scenarios. In 
heterogeneous and multihop wireless networks, nodes 
bearing differences in their capability of communications, 
e.g., the transmission power, the residual energy at wireless 
nodes, will lead to various transmission ranges. And further, 
nodes equipped with adjustable antennas may have 
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adaptable transmission ranges. In this paper, we revise the 
analytic modeling procedure to reflect the need for a 
variable transmission range r and the multi-hop forwarding 
using the percolation theory in deriving the two bounds. 

The transition phase of the wireless network connectivity 
can be illustrated according to the growth of node density in 
the following way. In the beginning, a small amount of 
wireless nodes are uniformly distributed in the area and the 
low density causes the network to be partitioned. By 
increasing the number of nodes, the network becomes dense 
and turns into a connected phase when the density exceeds a 
critical value. The evolution of connectivity is helpful for 
understanding the states of a network and leads to different 
applications corresponding to the states.  

In this paper, we first derive the two bounds of the critical 
density of wireless ad hoc networks based on the percolation 
theory. Here, the lower bound defines the moment (called the 
first connection time) before which the network is partitioned 
because of the sparse density and after which the nodes in 
network gradually become connected in the same component. 
The upper bound defines the moment when all the nodes are 
connected and become the giant component with high 
probability (called total connection time). Then, we study the 
duration of the transition phase, i.e., the latency to reach the 
total connection starting from the first connection based on 
percolation theory. This latency highly depends on the 
potential growth process of the node density. Here we offer 
three growth functions to derive the first connection time and 
the total connection time which denote the points when the 
node densities reach the lower and upper bound of critical 
value respectively. 

The paper is organised as follows. Section 2 summarises 
the related works that use the percolation theory for 
connectivity issue. In Section 3, we introduce the network 
model and preliminary knowledge related to the percolation 
that we use in this paper. The main analytical modeling of 
the bounds and results are given in Section 4. We also 
perform simulations and show case the connectivity based 
on the three growth functions and the related bounds in 
Section 5. The conclusion is presented in Section 6. 

2 Related work 

Percolation theory is widely used to analyse the network 
connectivity under various applications in recent publications. 
In Dousse et al. (2004), the power saving mechanism with 
completely uncoordinated pattern is discussed using 
continuum percolation theory. The bound of message latency, 
from a sender to its receiver, is derived by using an extension 
of the first passage percolation theory (Liggett, 1985). The 
authors in Kong and Yeh (2007) propose a distributed energy 
management algorithm for wireless sensor networks. By 
using the node degree and the percolation condition, the 
mechanism for saving energy can guarantee the network to be 
in connected state all the time. In addition, the work shows 
that the message delay scales sub-linearly or linearly with 
Euclidean distance between the source and the destination 
depending on network phase in terms of connectivity.  

In Xing and Wang (2008), the percolation-theory based 
connectivity issue is discussed in order to derive the last 
connection time and the first partition time for wireless 
networks, where the failure nodes may cause the network to 
enter into a partitioned phase. In their analytic model, the 
network is mapped to a lattice and the network properties 
are converted to the corresponding features in the lattice. 
Then, the condition of connectivity in wireless network is 
obtained from percolation condition in lattice. Our work is 
relevant to the paper (Xing and Wang, 2008), but the 
number of wireless node in network grows as time goes, 
which is the opposite to the case in Xing and Wang (2008). 
In addition, a different method is employed to derive the 
critical density and related time points. 

The critical transmission range for connectivity of 
wireless network is studied in Gupta and Kumar (1998). By 
deriving the lower and upper bounds of the probability for the 
connected network, the conclusion is that the network graph 

with 
2 ( )
( )

logn c n
r n

n
 

  is connected with probability one 

as n   if and only if ( ) .c n    In Ramanathan and 

Rosales-hain (2000), the problem of transmission power 
adjustment for topology control is proposed and the objective 
is to minimise the maximum transmit power subjecting to 
connectivity constraint. In addition, the distributed algorithms 
are introduced for mobile network so as to adapt to the 
dynamic topology change. The topology control depending 
on the alteration of transmission range is also discussed in 
Sanchez et al. (1999) where the so called Direct neighbour 
Graph is generated first and the optimal range is derived 
based on Minimum Spanning Tree. Based on the geometric 
random graph and spatial analysis of wireless node, 
Bettstetter (2002) provides an analytical result to obtain the 
minimum node degree for k-connectivity network. A 
continuum framework of wireless and mobile network (Chen 
et al., 2011) is proposed to identify the connectivity status of 
network. The continuum space consists of two dimensions: 
node density and node speed. According to different 
combination of density and speed, three classes of network 
are found including the total connected network, disrupted 
network and partitioned network. 

In this paper, we follow an alternative approach based 
on the technique mentioned in Meester and Roy (1996) to 
study the relation of node density and transmission range in 
terms of connectivity. And we consider the increment of 
node density, a different network scenario from the previous 
works. Furthermore, given the current node density, the 
density model can help to find the approximate critical 
transmission range for network connection. 

3 Problem modelling 

3.1 Network model 

The network is described as the Poisson Boolean Model in 
two dimensions (Meester and Roy, 1996). It is introduced as 
follows.  (X, r, λ) is a union of randomly scattered disks: 

( , , ) ( , , ) )i iX r B x r    
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where ( , , )i iB x r   is a disk centered at xi having radius ri. xi 

denotes the point of the Poisson process X of density λ in 
two dimensions. In order to model the wireless network, xi 
can be viewed as the wireless node i and ri denotes  
its transmission range. For simplicity, we assume  
the transmission ranges of node are equal and denoted by r, 
so the connective condition for any two nodes is 

.i jx x r   

3.2 Percolation theory 

Percolation theory (Kesten, 1982; Bollobas and Riordan, 
2006; Penrose, 2006) is initially used to model the spread of 
fluid or gas through a random medium. The original 
problem is that: Suppose a large porous rock is submerged 
under water for a long time, will the water reach the center 
of the stone? The theory assumes the surface is covered by 
points and points could be connected by edges. Given a 
large two dimensional grid of edges, an edge can be open 
with probability p and closed with probability 1 .q p   

The collection W0 of points connected to source 0 by an 
open edge is called open cluster of source 0. Most questions 
in percolation theory concern some aspects of the 
distribution of W0. Let Pp denote the probability on the 
configuration of open edge with probability p, and let θ(p) 
be the percolation probability defined as: 

0( ) {| | }pp P W     

where 0| |W  is the number of points in W0. In general, θ(p) is 

proportional to the probability p, and the following 
properties hold: 

(0) 0, (1) 1.    

And : sup{ : ( ) 0}cp p p   is called critical probability 

The percolation problem in geometric structure has been 
studied extensively in last three decades (Meester and Roy, 
1996). However, when the position of node is expressed in a 
continuous space, the continuum model is responsible to 
describe the process of percolation.  A fundamental result of 
continuum percolation is that there exists a critical density 
λc, defined by 0inf{ 0 : {| | } 0},c P W       so that: if 

,c   the network is in the super-critical phase; while if 

,c   the network is said to be sub-critical and 

0{| | } 0.P W     When the graph stays in super-critical 

phase, W0 is normally called the giant component since it 
would contain infinite number of nodes in network. 

3.3  Connectivity latency 

In order to model the transit phase from partition to 
connected state, we assume that the network initially 
contains only a small number of nodes expressed by the 
density λ0 within a fixed network area. After that, we 
introduce the growth function of network denoted by x(t) 
which describes the increment of the number of nodes 

against time. Then the density function is defined as follows 
according to the Thinning theorem (Penrose, 2006): 

0 ( )
( )

(0)

x t
t

x


   

where x(0) represents the initial number of nodes in the 
network. When the density increases, two time-based 
metrics are critical to understand the critical density. One 
metric is the first connection time Tf and the other is the 
total connection time Tt. They are defined in equation (1) 
and equation (2) respectively. 

0sup{ 0 : {| | } 0}
tfT t P W      (1) 

0inf{ 0 : {| | } 0}.
ttT t P W      (2) 

Typically, the metric Tf defines the latest time point in a density 
growing process before which the probability 

t
P  is zero, i.e., 

the network is partitioned in terms of the giant component. The 
metric Tt depicts the earliest time point in a density growth after 
which the probability becomes larger than zero, i.e., the 
network is connected in terms of the giant component. Thus, 
the two metrics define the time instances according to the lower 
bound and the upper bound of the critical density. Given the 
time function of node density and the range of critical density, 
we can derive these two time points. 

4 Analysis and result 

In this section, we first derive the lower bound and upper 
bound of λc. The variable of transmission range r is 
considered in the function of density bound for studying the 
trend as the range varies. Secondly, the first connection time 
and total connection time are derived. Specifically, the 
sparse network with low density of node at time t0 grows 
with certain distribution until the density reaches the lower 
bound of critical density at t1. Then the first connection time 
will be t1. After that, when the density increases to the upper 
bound at t2, then t2 becomes the total connection time. 

4.1 Lower bound of λc 

We derive the lower bound following the approach used in 
Meester and Roy (1996) by using Branching Process 
(Grimmett and Stirzaker, 1992). The rationale behind the 
approach is that we first derive the function about the 
number of nodes in the connected component and then find 
the minimum density requirement for a percolated network 
where the probability of having infinite number of node is 
greater than zero. We apply a two dimensional Poisson 
Boolean model (X, r, λ) and a multi-type branching process 
where the type of node denotes the distance between a node 
and its predecessor. The distances are distributed over all 
real numbers in (0, r) and the maximum value r guarantees 
the link between the nodes in adjacent generation 

Generally, the members of the kth generation of the 
branching process starting from x0 are ,1 ,2 ,, , , .

kk k k nx x x  the 
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children of , , [1, ]k i kx i n  are those points from another 

independent process 1kX   which fall in the region 

, 1,( , ) \ ( , ),k i k jS x r S x r  where 1,k jx   is the parent of ,k ix  and 

circle region ( , ) { : | | },S x r y y x r    also the type of 

node 1,k lx   at the (k+1)th generation from the process 1kx   

is , 1,: | | (0, ),k i k lt x x r    in consequence, the distribution 

of node 1,k lx   whose types lie in (0, r) depends on the region R: 

, 1, ,( ( , ) \ ( , )) { :| | (0, )}.k i k j k iR S x r S x r y y x r     (3) 

Assume that ,k ix  is of type u and 1,k lx   has type v, then the 

region R becomes a curve defined as , 1,( ( , ) \ ( , ))k i k jS x r S x r  

,{ : | | }.k iy y x v    Let ( | )g v u  be the length of that curve 

and its value is: 

2 2 2

( | )

2 v arcos if ;
2

0 if 0 < .

g v u

r u v
r u v r

uv
v r u

  
   

  

 (4) 

Figure 1 demonstrates the branching process described here. 
Initially, the parent node 1,k jx   and the child node ,k ix  with 

type u are shown in Figure 1(a). The grandchildren nodes 
having type v could occur along the circle centered at node 

, .k ix  The valid ones that contribute to percolation only appear 

along the curve from A to B with counter-clockwise direction 
in Figure 1(b). On the curve AB, a grandchildren nodes 1, .k lx   

is placed. The equation (4) calculates the length of the curve AB. 

Figure 1  Multi-type branching process: (a) the first branching and 
(b) the second branching (see online version for colours) 

 

As a result, given that an individual is of type u, the 
expected total number of its children whose types lie in  
(0, r) is given by 

0
( | ) .

r
g v u dv  (5) 

From Theorem 3.10 in Meester and Roy (1996), the expected 
number of members of the nth generation having types in  
(0, r) coming from a particular individual of type u is given by 

0
( | ) .

rn
ng v u dv   (6) 

Then, the expected total number of individuals is 

0
1

( | ) .
rn

n
n

g v u dv



   (7) 

By taking advantage of the linear operator Tf, the equation is 
further reduced to 

1
1

( )n n

n

T u



  (8) 

where 
0

( ) ( ) ( | )
r

fT u f v g v u dv   and 1( ) 1v   for all 

(0, ).v r  

If λ is sufficiently small, the result of branching process 
will converge. Specifically, λ should be less than 1|| ||T 

 where 

|| ||T  denotes the usual operator norm of T. Using the theory of 

Hilbert-Schmidt operator (Moiseiwitsch, 1977), || ||T  is greater 

than 0
( | )

,

r r

r u
g v u dvdu

r
 

 so the condition of convergence is 

0

.
( | )

r r

r u

r

g v u dvdu





 

 (9) 

The consequence of convergence demonstrates that the 
expected number of nodes in a component is finite, so the 
critical density λc should be greater than the density with 
which the total number of nodes is convergent. Then the 
expression of lower bound of critical density is 

0

.
( | )

c r r

r u

r

g v u dvdu





 

 (10) 

4.2 Upper bound of λc 

In order to obtain the upper bound of critical density, the 
site percolation model on the triangular lattice is applied and 
the process is based on the Theorem 3.10 in Meester and 
Roy (1996). Figure 2 shows a part of the triangular lattice. 
The vertex of each triangle is called site. It represents the 
area of the yellow ‘flower’ shown in that figure. The theory 
of site percolation (Kesten, 1982) says that any nodes 
located in the flower can be equal to the case that the 
incident vertex is occupied. So the condition of percolation 
on the triangular lattice is applied to the lattice covered by 
flowers centered at the vertex of triangle. 
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Figure 2 The triangular lattice with area A (see online version 
for colours) 

 

The rational is that if the site percolation of the triangular 
lattice occurs, the percolation occurs in the network. For the 
multihop network we study in this paper, a link occurs only 
if the distance between two nodes is within the transmission 
range r. Applying the site percolation model, we design the 

edge length of triangular lattice to be 
2

r
. The sector forming 

the flower has a radius of 
2

r
 and centers at the midpoints of 

the six edges adjacent to the same site.  
An occupied site is defined if there is a node with 

Poisson Process X situated inside the interior of the 
associated flower of the site. In Figure 2, that is the site A, 
representing the yellow flower. If there are two adjacent 
sites A and B both being occupied, the distances between the 
nodes centred at these two flowers must be less than or 
equal to twice the edge length of the triangular lattice. Since 
the edge length is r/2, the largest distance between the two 
nodes in the adjacent flowers is r. Thus, the two nodes are 
linked consequently. Given that the lattice covers the entire 
network, we have proofed that the site percolation model 
described here allows the percolation to occur in the 
triangular lattice, hence in the network. 

We use this model to derive the upper bound of the 
critical density. Assume the area of each site that has a 
flower shape be | |A  and the node density is λ. From 

Theorem 3.10 in Meester and Roy (1996), the probability of 
site occupation is | |1 .Ap e    From the theory of site 

percolation (Kesten, 1982), if 1/ 2p   then with positive 

probability there is percolation in the site percolation model 
on the triangular lattice. Thus if | | ln 2,A   then there is 

percolation with positive probability in the Boolean model. 
To obtain | |,A  we refer to Figure 2, in that the area A 

consists of six sectors of A’. Each sector has a radius of x. It 

is easy to get the length of x, which is 
( 15 3

.
8

r 
 Then, 

the area A is equal to 6A’ which is approximately 20.2052 .* r  
Thus the upper bound of the critical density is 

2

ln 2 3.3779
.

| |c A r
    (11) 

4.3 Discussion of λc 

As for the lower bound of critical density, the auxiliary 
function a(r) is proposed to simplify the integral expression 
in equation (10). Then the non-zero part of ( | )g v u  

becomes 2va(r) where 
2 2 2

( ) arcos
2

r u v
a r

uv

 
  and the 

lower bound of critical density is reduced to 
3
2

2

( )
.

a r

r
 It is 

difficult to derive the concrete form of a(r), however its 
value range can be determined. 

Lemma 4.1: Given r which denotes the transmission range 

of node and 
2 2 2

( ) arccos
2

r u v
a r

uv

 
  where 0 < u, v < r 

and u +v > r, then 
2

( ) 0, .
3

a r
  

 
 

Proof: Let 
2 2 2

( , , )
2

r u v
f r u v

uv

 
   where 0 < u, v < r  

and u + v > r, then 
2 2 2

2
0

2u

r u v
f

vu

      and vf    

2 2 2

2
0.

2

r v u

uv

  
  So the extrema of function f(r, u, v) can 

be found at the definition boundary. When u + v = r,  
f(r, u, v) = 1. While u, v = r, f(r, u, v) = −1/2. Since 

2 2 2

( ) arcos ,
2

r u v
a r

uv

 
  then 

2
( ) 0, .

3
a r

  
 

 

According to the lower bound and upper bound of node 
density, the critical density falls in the following range: 

3
2

2 2

( ) 3.3779
, .

a r

r r

 
 
 

 Figure 3 shows the curves of the lower 

bound and the upper bound of the critical density with the 
transmission range r increasing from 1–10. As seen from the 
figure, both curves decline when the transmission range 
increases. This explains the fact that when transmission range 
is large, a node can still maintain its connectivity while the 
nodes around it can be less. The figure also shows that when 
transmission range increases, the lower and the upper bounds 
become closer. 

Figure 3 Upper bound and lower bound of λc (see online version 
for colours) 
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4.4 Connectivity latency 

The time elapsed to reach the lower or upper bound depends 
on the growth function of the network density. We use three 
growth functions to derive the first connection time and 
total connection time according to the bounds we obtained 
previously. The three functions potentially depict different 
ways that nodes can be inserted to the network. The first 
function follows linear growth shown in the equation 

( )x t kt a   where (0) .x a  The coefficient k denotes the 

growth rate and a can be viewed as the initial amount of 
nodes. Such a function reflects a constant rate increasing of 
nodes in the network, which can be true in some scenarios.  
The second is the exponential function to reflect the case 
that the growth of node happens in short time. The 
expression is x(t) = aekt where x(0) = a. In this function, k 
and a represent the growth rate and initial number 
respectively. The last one is the logistic function which is 
often used to describe the population growth and virus 
propagation. Different from the other functions, the logistic 
function incorporates an upper bound on the growth. We 

denote the growth function by 
0( )

( )
1 k t t

a
x t

e 


 where 

0( ) .
2

a
x t   The constant a can be regarded as the maximum 

number of infected nodes, k denotes the average infection 
rate and t0 is the time when the growth rate reaches  
the maximum. 

Three sample functions are illustrated in Figure 4 and 
the curves show the different growth patterns. The 
parameters for the three growth functions are selected in 
such a way that all of them will reach the maximum number 
of nodes 1400 by the simulation time of 90s. With this 
special constraint, the exponential function grows slower 
than linear at the beginning. It shows rapid growth rate 
toward the end of the simulation. The logistic function 
shows the trend of slower down when approaching the 
upper limit. 

Figure 4  Growth functions (see online version for colours) 

 

5 Simulation 

We simulate the network evolution in Matlab with different 
growth functions to verify the bounds of critical density 
derived from the previous section. The simulation area is 
20 20  with uniformly distributed nodes in two dimensional 
space. The network evolution starts from time 0 and time 
step is set to be 1 s. The results are obtained from total  
50 runs. The averaged values and confidence intervals with 
probability 0.9 are presented in many figures. 

We measure the connectivity using Relative Giant 
Component Size. It is the ratio of the number of nodes in the 
largest network component to the total nodes. The largest 
network component can be found through Breadth First 
Search in the generated network. As the density of nodes 
increases, the ratio approaches to 1. 

Figures 5–7 describe the process of network evolution in 
terms of connection using different growth functions. The 
red circle denotes the node and blue line is the link between 
two nodes. As the network grows, more nodes and 
connections appear in the simulation area. In the linear 
growth function ( )x t kt a   used in Figure 5, both 

parameter k and a are set to be 15. For the exponential 
function ( ) ktx t ae  in Figure 6, we let the a = 15 and k = 

1/20 then the amount of node grows quickly next to the end 
of simulation. In Figure 7, the specific form of logistic 

growth function is 
0.15( 30)

1400
( ) .

1 t
x t

e 


 The configuration  

of function shows that the most nodes will be generated 
around 30 s.  

Further, the relation between connectivity and time is 
illustrated. In Figure 8, the transmission range is set to be 1. 
The red and green line in each subfigures (a)–(c) indicate the 
first connection time and the total connection time along with 
the corresponding densities. All the curves in Figure 8(a)–(c) 
roughly show the upward trend of relative size of giant 
network component. In the earlier phase, due to the smaller 
total number of nodes, the nodes in the largest component 
account for a relative high ratio. However, in the phase after 
the first connection time, the ratio shows an increasing mode 
and reaches to 1 when all the nodes are connected. In 
addition, the time instants of the first connection time and 
those of the total connection time in these subgraphs agree 
with the growth function each represents (see Figure 4). They 
also show that the corresponding transition periods, i.e., the 
length between the red line and green line, reflect the growth 
functions. As for the confidence interval with 0.9 probability, 
the intervals close to the lower bound denoted by green line 
have wider ranges. The observations reveal that the network 
state in terms of connectivity has larger variance during that 
period of time. The first connection time approximately 
captures the moment when the network connectivity begins  
to change. 
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Figure 5  Network evolution with linear growth at time: (a) t = 0; (b) t = 30; (c) t = 60 and (d) t = 90 (see online version for colours) 

 

Figure 6  Network evolution with exponential growth at time: (a) t = 0; (b) t = 30; (c) t = 60 and (d) t = 90 (see online version for colours) 

 

Figure 7  Network evolution with logistic growth at time: (a) t = 0; (b) t = 30; (c) t = 60 and (d) t = 90 (see online version for colours) 

 

Figure 8  Phase transition against time with r = 1 at time: (a) linear growth; (b) exponential growth and (c) logistic growth (see online 
version for colours) 

 

Figure 9 shows the expected number of node neighbours with 
short confidence intervals according to the three node growth 
functions. The curves in each subfigure approximate the 
growth functions in Figure 4. The expected number of 
neighbours corresponding to the lower bound of critical density 
is around four and the amount is about ten for the upper bound. 
The observation indicates that the network is connected when 
the amount of neighbour increases from four to ten. The 
connectivity metric in terms of expected neighbour conforms to  
 
 

the result of connection degree in Xue and Kumar (2004). 
Compared to the conventional knowledge of the magic number 
of node density, the lower bound we show here is less. This is 
because the conventional number serves more like an average 
case, while the lower bound here depicts the latest time for the 
network to have no probability of the occurrence of the giant 
component. It is not the time that the giant component will 
definitely occur. This also explains that the upper bound is 
larger than the conventional number.  

. 
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Figure 9  Expected number of neighbours against time with r = 1: (a) linear growth; (b) exponential growth and (c) logistic growth  
(see online version for colours) 

 

Figure 10 Phase transition against time with r = 2: (a) linear growth; (b) exponential growth and (c) logistic growth (see online version  
for colours) 

 

Figure 11 Expected number of neighbours against time with r = 2: (a) linear growth; (b) exponential growth and (c) logistic growth  
(see online version for colours) 

 

We then change the transmission range to be r = 2 to study 
the connectivity transition. The growth functions are the same 
as above. The results are given in Figure 10. Compared with 
the curves for r = 1 (Figure 8), these  results show that less 
time is needed to reach the total connected state due to the 
larger r. Moreover, the first connection time occurs when the 
size of giant component is relative small. Figure 11 further 
shows the evolution of the expected neighbours in this r = 2 
case where the values approximately range from two to ten 
during the critical phase. Although the connection time 
becomes short due to the larger transmission range, the 
expected number of neighbour is relatively stable. 

6 Conclusion 

In the paper, we study the connectivity transition of wireless 
network when the density grows. The bounds of the related 

critical densities that denote the transformation from partition 
to connected state are derived, which are corresponding to the 
first connection time and total connection time. We studied 
three node growth functions for modeling the increment of 
node. The simulations use three instances of these growth 
functions and the results show that the related time metrics and 
the trend of change in connectivity when time goes by. In 
future work, parameters can be studied for more realistic radio 
models in which the transmission range could have irregular 
shapes rather than a circle. Also the heterogeneity of wireless 
nodes can be considered such as different transmission ranges 
and heterogeneous distribution in deployments. 
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